#3677. 「一本通 3.3 例 2」双调路径 暂未评定

时间限制:1000 ms 内存限制:512 MiB 标准输入输出
题目类型:传统 评测方式:文本比较
上传者: root

题目描述

**原题来自:BalticOI 2002** 如今的道路收费发展很快。道路的密度越来越大,因此选择最佳路径是很现实的问题。城市的道路是双向的,每条道路有固定的旅行时间以及需要支付的费用。 路径是连续经过的道路组成的。总时间是各条道路旅行时间的和,总费用是各条道路所支付费用的总和。一条路径越快,或者费用越低,该路径就越好。严格地说,如果一条路径比别的路径更快,而且不需要支付更多费用,它就比较好。反过来也如此理解。如果没有一条路径比某路径更好,则该路径被称为最小路径。 这样的最小的路径有可能不止一条,或者根本不存在路径。 问题:读入网络,计算最小路径的总数。费用时间都相同的两条最小路径只算作一条。你只要输出不同种类的最小路径数即可。

输入格式

第一行有四个整数,城市总数 $n$,道路总数 $m$,起点和终点城市 $s,e$; 接下来的 $m$ 行每行描述了一条道路的信息,包括四个整数,两个端点 $p,r$,费用 $c$,以及时间 $t$; 两个城市之间可能有多条路径连接。

输出格式

仅一个数,表示最小路径的总数。

样例

#### 样例输入 ```plain 4 5 1 4 2 1 2 1 3 4 3 1 2 3 1 2 3 1 1 4 2 4 2 4 ``` #### 样例输出 ```plain 2 ``` #### 样例说明 样例输入如下图: ![bic.png](https://loj-img.upyun.menci.memset0.cn/2019/02/24/5c7244de568e0.png) 从 $1$ 到 $4$ 有 $4$ 条路径。为 $1\to 2\to 4$(费用为 $4$,时间为 $5$),$1\to 3\to 4$(费用为 $4$,时间为 $5$),$1\to 2\to 3\to 4$(费用为 $6$,时间为 $4$),$1\to 3\to 2\to 4$(费用为 $4$,时间为 $10$)。 $1\to 3\to 4$ 和 $1\to 2\to 4$ 比 $1\to 3\to 2\to 4$ 更好。有两种最佳路径:费用为 $4$,时间为 $5$($1\to 2\to 4$ 和 $1\to 3\to 4$)和 费用为 $6$,时间为 $4$($1\to 2\to 3\to 4$)。

数据范围与提示

对于全部数据,$1\le n\le 100,0\le m\le 300,1\le s,e,p,r\le n,0\le c,t\le 100$,保证 $s\not =e,p\not =r$。