对于从1到N(1<=n<=39)的连续整集合合,能划分成两个子集合,且保证每个集合的数字和是相等的。
举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,他们每个的所有数字和是相等的:
{3} and {1,2}
这是唯一一种分发(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数)
如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分发的子集合各数字和是相等的:
-
{1,6,7} and {2,3,4,5} {注 1+6+7=2+3+4+5}
-
{2,5,7} and {1,3,4,6}
-
{3,4,7} and {1,2,5,6}
-
{1,2,4,7} and {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出。