#7951. 算法提高 矩阵乘方 普及−

时间限制:1000 ms 内存限制:128 MiB 标准输入输出
题目类型:传统 评测方式:文本比较
上传者: 匿名

题目描述

给定一个矩阵A,一个非负整数b和一个正整数m,求A的b次方除m的余数。
  其中一个nxn的矩阵除m的余数得到的仍是一个nxn的矩阵,这个矩阵的每一个元素是原矩阵对应位置上的数除m的余数。
  要计算这个问题,可以将A连乘b次,每次都对m求余,但这种方法特别慢,当b较大时无法使用。下面给出一种较快的算法(用A^b表示A的b次方):
  若b=0,则A^b%m=I%m。其中I表示单位矩阵。
  若b为偶数,则Ab%m=(A(b/2)%m)^2%m,即先把A乘b/2次方对m求余,然后再平方后对m求余。
  若b为奇数,则Ab%m=(A(b-1)%m)*a%m,即先求A乘b-1次方对m求余,然后再乘A后对m求余。
  这种方法速度较快,请使用这种方法计算A^b%m,其中A是一个2x2的矩阵,m不大于10000。

输入格式

输入第一行包含两个整数b, m,第二行和第三行每行两个整数,为矩阵A。

输出格式

输出两行,每行两个整数,表示A^b%m的值。

样例

样例输入1

2 2
1 1
0 1

样例输出1

1 0
0 1